

RCSB PDB Advisory Committee

Virtual Meeting Monday, April 26, 2021

Background Information Slides

Slides with a blue title are provided as background information and can be presented and discussed at the meeting by request.

Main Slides Appear with Green Titles

Agenda

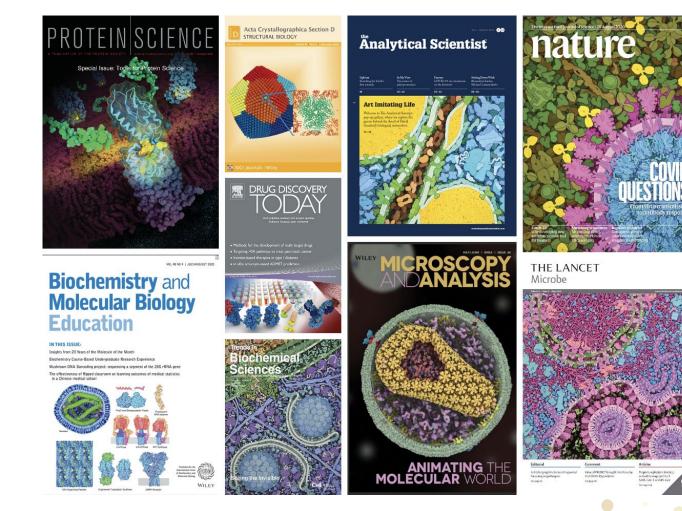
11:30am PDT	2:30pm EDT	Executive Session	Paul Adams/Breakout Room via Ken Dalenberg
11:45	2:45	Welcome and Introductions	Stephen K. Burley
11:55am	2:55	Overview; Response to COVID-19	Stephen K. Burley
12:10pm	3:10	Deposition/Biocuration Status	Jasmine Young
12:25	3:25	PDB Archive Status	John Westbrook
12:35	3:35	New/Improved RCSB.org	Jose Duarte/Yana Rose
12:50	3:50	PDB Data Delivery Status	Robert Lowe
1:00	4:00	Outreach/Education; PDB50	Christine Zardecki
1:15	4:15	Operations and Funding	Stephen K. Burley
1:30	4:30	Break	
1:45	4:45	Discussion	
2:15	5:15	Executive Session	Breakout Room <i>via</i> Ken Dalenberg
3:00	6:00	Feedback from AC	Stephen K. Burley, Andrej Sali, Christine Zardecki
3:30	6:30	End	

Introductions to Participants

Advisory Committee (<u>full Roster</u>)

• Paul Adams (Chair), Peter Andolfatto, Judy Blake, Andy Byrd, Bridget Carragher (absent), Wah Chiu, Kirk Clark, Paul Craig, Robert B. Darnell, Roland Dunbrack, Paul Falkowski, Thomas Ferrin, Mandë Holford, Cathy Peishoff, Sue Rhee, Torsten Schwede, Jill Trewhella

RCSB PDB


- Stephen K. Burley, Helen M. Berman
- Rutgers: Robert Lowe, John Westbrook, Jasmine Young, Christine Zardecki
 - IT Support: Ken Dalenberg
- UCSD: Jose Duarte, Yana Rose
- UCSF: Andrej Sali

Funders

 Steven Ellis (NSF), Ramana Madupu (DOE), Amy Swain (DOE), Susan Gregurick (NIH OD, absent) Jerry Li (NCI, absent), Paula Flicker (NIGMS)

5

2020 Covers by RCSB PDB

Overview

Stephen K. Burley

Publicly Available PDB Data

PDB Archive contains >1 TB of Structure Data for Proteins, DNA, and RNA

The cost to replicate the contents of the PDB archive is estimated at **\$18 billion (USD)** (Analysis)

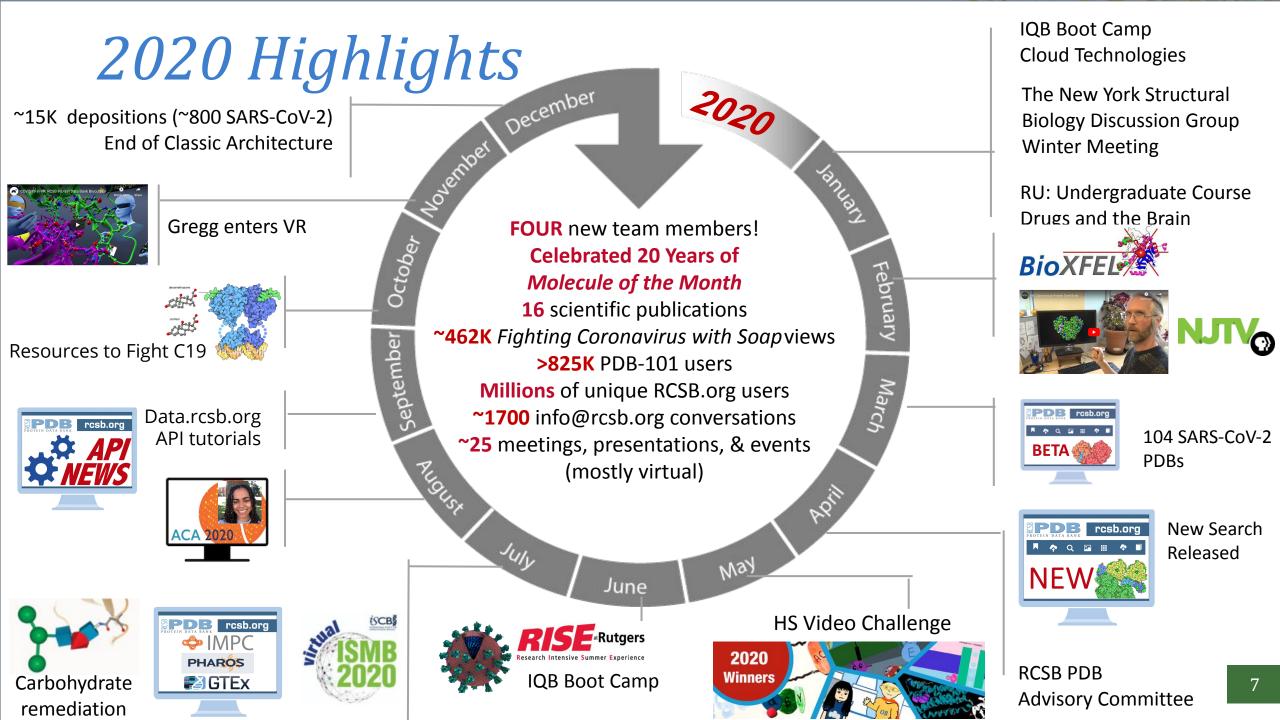
The PDB Archive

- Grows at the rate of nearly 10% per year
- Used to download >2 million structure data files per day
- Managed by International collaboration US-Asia-Europe
- Manages "Big Data" as global Public Good

PDB Data

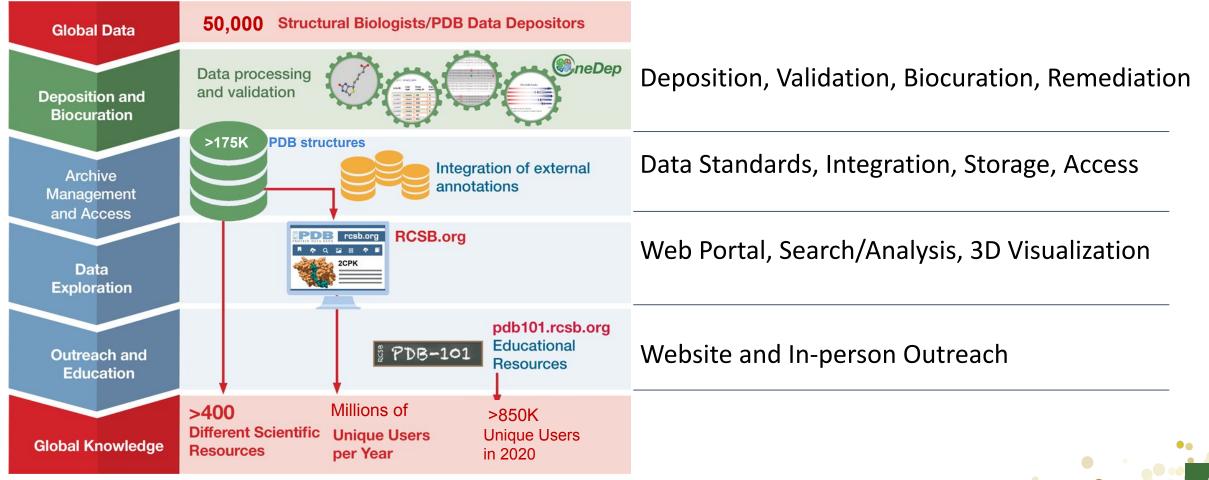
- Enable research in subject areas from Agriculture to Zoology (Analysis)
- Contributed data to nearly >1 million published research papers
- Used by >400 biological data resources

PDB Data Impact


- · Basic and applied research
- Patent applications
- Discovery of lifesaving drugs
- Innovations that can lead to new product development and company formation
- STEAM education: PDB-101 provides curricula and online tools for teachers and students

Millions of Data Consumers worldwide served every year

Researchers, scientists, educators, students, curious public, medical professionals, patients, and patient advocates


Public and Private sectors, including pharmaceutical and biotechnology companies Generates return on investment of ~1,500 times federal funding (Analysis)

Background Information: https://www.rcsb.org/pages/about-us/index

RCSB PDB: Driving Breakthroughs in Research and Education

Protein Structure/Central Dogma Now Part of 2020 Culture

How to Make Your Own Coronavirus Piñata (and Then Smash It) Join the craft renaissance and cope at the same time. \mathscr{S} nytimes.com

Learning from History: Fauci Donates Model to Smithsonian's COVID-19 Collection

Posted on April 15th, 2021 by Dr. Francis Collins

N.J. Couple Launch Car Service to Take Neighbors in Need to COVID Vaccine Appointments

Joe Cicchetti and his partner Shirley Limburg recently launched "Joe's Covee Car" to drive people to their appointments for free

By Rachel DeSantis April 19, 2021 05:04 PM

Soon, though, the idea became a reality, and Cicchetti's vehicle was decorated with dozens of red spikes meant to resemble the coronavirus protein.

He and Limburg, 59, are both retired and fully vaccinated, so for the past month, they've been driving the car around Hunterdon and Warren Counties, transporting those who need rides to their vaccine appointments, according to NJ.com.

Limburg told the outlet that the couple, who live in Bloomsbury Borough, hope to reach those unable to get around, whether it's because they don't have a car or can't drive, or because they cannot afford an Uber and are not close to public transportation.

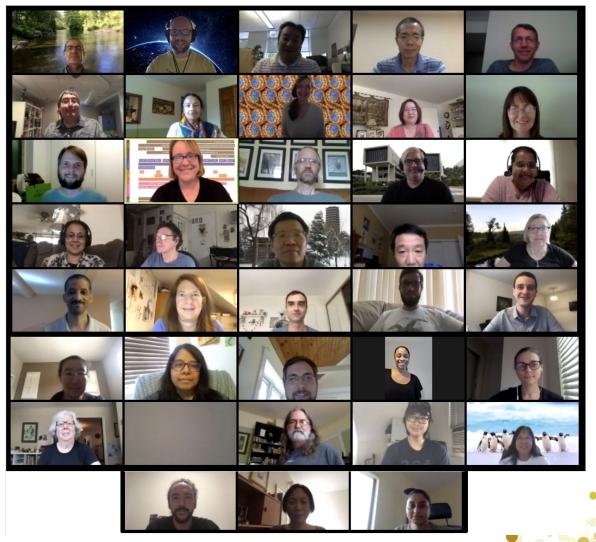
"For us to drive somebody is a little thing, but for somebody who has no car and is maybe unemployed right now ... for them it's a big thing," she told NJ.com. "We know there's some people where they're just not going to be able to get to [the appointment]. And maybe they can't afford to Uber."

RELATED: All U.S. Adults Now Eligible to Receive COVID Vaccine – and Half Have Already Had at Least One Dose

"Life's been good to us, so we figured we could do something good for our community," she added.

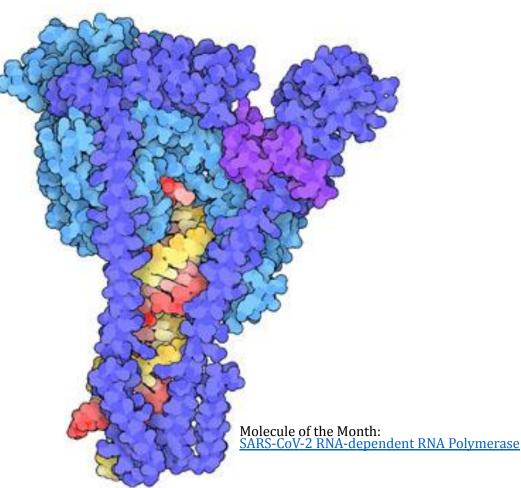
https://people.com/human-interest/nj-couple-launch-car-service-to-take-ne ighbors-in-need-to-covid-vaccine-appointments/

First *Coronavirus* painting ~55K views since Feb 6, 2020


Response to COVID-19

Stephen K. Burley

Impact of COVID 19 on Operations


- Remote working since March 2020
 - Regular All Hands and social hours in addition to ongoing meetings
- Biocuration of SARS-CoV-2 structures prioritized
 - >1,000 structures released as of March 2, 2021 (most immediately)
 - Covid-19 accounted ~7% of 2020 depositions
- Pandemic-related content on PDB-101 increased traffic
- Related resources updated weekly at <u>RCSB.org/covid19</u>

Covid-19 Depositions in 2020

- ~1000 deposited/795 released
 - 416 entries from PanDDA method submitted *via* GroupDep
- 173 PIs
- 17 Countries
- Median 34 days to release
- 6 RDRP structures (Remdesivir)
- 263 protease co-crystal structures
 - 210 with bound ligand
- 266 spike protein structures
- Numerous 3DEM contributions

Covid-19 Data Utilization

First Structure (PDB ID 6lu7)

- >260K website views
- Downloads ~100K
- Interest in 6lu7 peaked March/April

Therapeutic Interventions

- Pfizer has put two 6lu7 inhibitors into clinical trials (IV prodrug and Oral)Second generation vaccine
- design
- Monoclonal antibody • design
- *În silico* screening efforts

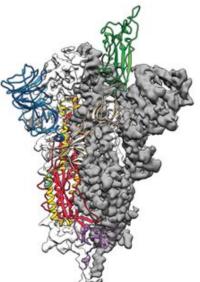
NJTV News spoke with Rutgers University researchers Stephen Burley and Brian Hudson at the Protein Data Bank about finding the key to fighting COVID-19. Shown: PDB structure 6lu7

PDB Data Driving Research and Education

New SARS-CoV-2 databases utilizing PDB data (NAR 2021 Database Issue)

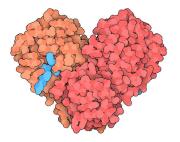
- <u>CoV3D</u> Experimental coronavirus protein structures
- <u>DockCoV2</u> In silico drug docking against SARS-CoV2 targets
- <u>LitCovid</u> Curated COVID-19 literature
- <u>ViruSurf</u> Portal to SARS-CoV2 sequences and variants

Resources Providing Additional Curation


- <u>Coronavirus Structural Task Force</u>
- <u>Covid-19.bioreproducibility.org</u>

C&EN's Year in Chemistry 2020

We review the year's biggest trends in chemistry research, most memorable molecules, and more DECEMBER 14, 2020 | APPEARED IN VOLUME 98, ISSUE 48


STRUCTURES

After SARS-CoV-2's genetic code was published Jan. 10, structural biologists jumped into action to understand the 3-D structures of the virus's proteins. Their aim was to know not just how the virus works on a molecular level but also how to guide the design of drugs, vaccines, and antibody therapies. The virus's spike protein, a segment that latches onto and infects human cells, has now been imaged multiple times. It took just a couple of weeks for Jason McLellan and coworkers at the University of Texas at Austin to determine the initial structure (Science 2020, DOI: 10.1126/science.abb2507). Since then, other teams have imaged drugs bound to the virus's main protease and its RNA-dependent RNA polymerase (Science 2020, DOI: 10.1126/science.abb3405 and 10.1126/science.abb7498), as well as antibodies bound to the spike protein (Science 2020, DOI: 10.1126/science.abb7269). In fact, by late November, an international repository of biological structures known as the Protein Data Bank contained

CV19: 11% of 2020 PDB-101 Views

February Molecule of the Month: <u>Coronavirus Proteases</u>; >85K views

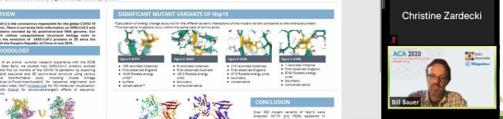
Video: >493K views 2020 American Public Health Association Film Festival Official Selection

6 <u>Molecular Landscapes</u> by David Goodsell 73K views

Feature	Number of Page Views				
MOTM Main Protease	85,645				
MOTM Spike	20,047				
MOTM RDRP	17,945				
Soap Video	36,752				
Series: Fighting the Pandemic (4 articles)	5,832				
Coloring Book page	24,824				
Goodsell Landscapes (6)	73,493				
Images (landing pages)	2,141				
Browse landing page	10,400				
Covid-19 Teach	17,232				
Total	294,311				
(~11% of total traffic calendar 2020)					

(~11% of total traffic calendar 2020) 180,303 views in first 6 months

Summer of the "Coronaverse"



- One-week Boot Camp: 35 student researchers studied sequence-structure evolution of the main protease
 - Co-mentored by BASIL participants
 - Materials: <u>https://covid19-bootcamp.rcsb.org/</u>
 - Description: COVID-19 Evolution and Structural Biology (2020) BAMBed 48:511–513 doi: <u>10.1002/bmb.21428</u>
- 12 continued for 5 weeks to explore the other structures
 - 3 supported by NSF REU
 - 4 presented at American Crystallographic Association
 - Sophia awarded *MiTeGen-Society of Physics Students Undergraduate Poster Prize*
- Publications
 - Architecture of the SARS-CoV-2 genome and proteome *bioRxiv* 2020 doi:

10.1101/2020.12.01.406637

• Under revision for *PROTEINS*: *Structure*, *Function*, and *Bioinformatics*

Boot Camp Acknowledgements

- IQB Faculty and Graduate Students: Stephen K. Burley, Shuchismita Dutta, Brian Hudson, Jennifer Jiang, Sagar Khare, Joseph Lubin, Vidur Sarma, Lingjun Xie, Christine Zardecki
- IQB's Ken Dalenberg for technical oversight
- <u>BASIL</u>: Biochemistry Authentic Scientific Inquiry Laboratory) biochemistry consortium faculty: Paul Craig (Rochester Institute of Technology), Bonnie Hall (Grand View University), Julia Koeppe (SUNY Oswego), Stephen Mills (Xavier University), Mike Pikaart (Hope College), Rebecca Roberts (Ursinus College)
- <u>RISE at Rutgers</u>: nationally acclaimed summer research program for outstanding undergraduates from diverse backgrounds
- Rutgers Faculty Lectures: Yana Bromberg (SEBS), Siobain Duffy (SEBS), Jay Tischfield (SAS/RUCDR)

Protein Structure/Central Dogma Now Part of 2020 Culture

No Service Disruptions

Managed More Depositions

Released More Structures

Enabled More Downloads

Published More Papers

Submitted More Grants

Secured More Funding

Supported More Outreach

Hosted More URM Interns

Ran Two Boot Camps

Spoke Virtually at More Meetings

Planned wwPDB PDB50 ASBMB

Planned RCSB PDB PDB50 ACA

Planned RCSB PDB PDB50 ACS

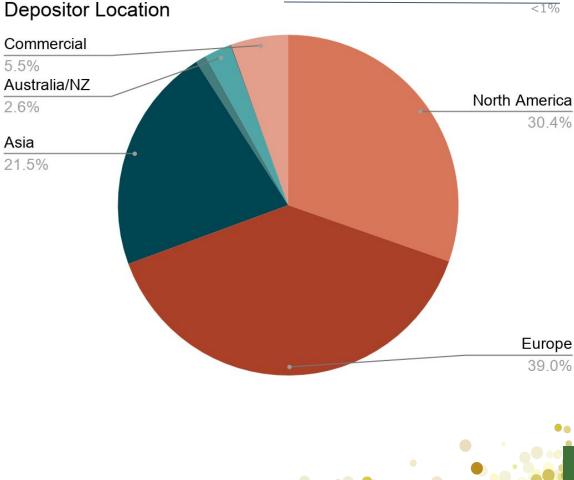
Questions and Comments?

Deposition/Biocuration

Jasmine Young

2020 wwPDB Deposition/Biocuration Statistics

Commercial

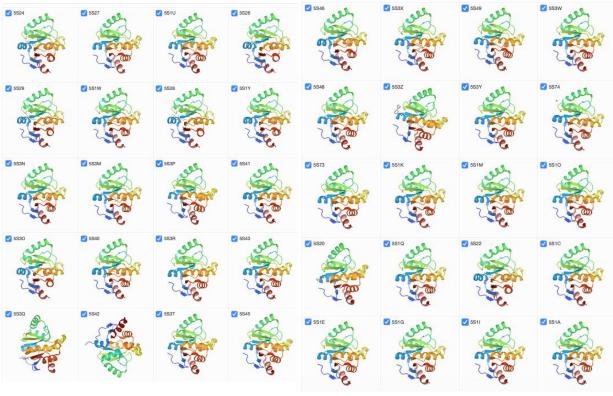

5 5%

26%

Asia 21.5%

- Record 15,436 new depositions (15.4% increase over 2019)
- Record 7,190 RCSB PDB-biocurated (29.9% increase over 2019)
- Biocuration workload balanced geographically
 - 47%* Americas, Oceania
 - 31% Europe, Africa
 - 22% Asia

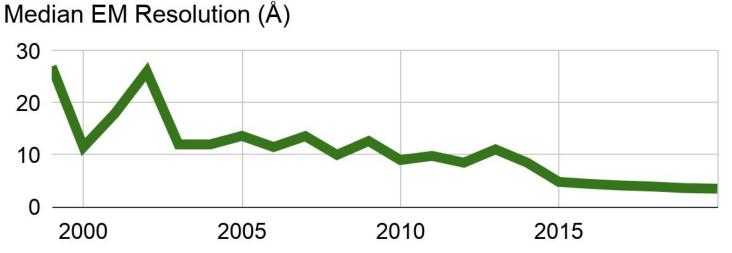
*Global Group Depositions included


Africa

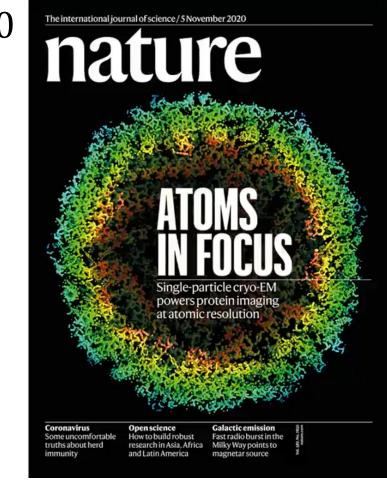
<1%

Efficient Group Deposition/Biocuration

- Depositors can submit multiple, similar structures via GroupDep
- Total of 416 SARS-CoV-2 structures with 172 novel ligands from PanDDA fragment screening
- All processed and released within two weeks from date of deposition



<u>Nsp3 Macrodomain</u>


3DEM: Fast Evolving

- Record 2,780 new 3DEM structures in 2020
 40% increase from 2019
- Map volume analysis part of validation
- Reaching very high resolution limits (~1Å)

Cathy Lawson serves as EMDB/EMDR Liaison on OneDep Project Team

Deposition/Biocuration in 2020

- Better automation for biocurating incoming depositions
 - Based on existing structure annotations
 - Median processing time/entry reduced for large and/or complex entries (from 3-4 days to <2 days)
- Streamlined NMR data deposition in NEF and NMR-STAR formats
- Full coordinate replacement enabled (131 entries versioned)
- Carbohydrate remediation project completed in July
- Enhanced Validation: carbohydrates, EM map volume analysis, NMR restraints assessments
- Wholesale validation report recalculation and 3DEM map analysis added to Archive

Deposition/Biocuration Goals for 2021

Goal	Impact/Gain	(mess)
Provide validation reports in mmCIF format	Improve data quality Enable interoperability	
 Set up PDB China OneDep instance at PDBj Provide more automated OneDep software installation Document software packaging and maintenance Provide Biocuration training/quality assessment Configure OneDep software to include PDBc site Improve CCD code distribution 	Increase wwPDB sustainability Enhance wwPDB collaboration Reduce Biocuration workload	
Upgrade on Python 3 and Centos 8	Improve system maintenance	
Biocuration Automation	Increase Biocuration efficiency	
Assembly Annotation by Depositor	Increase Biocuration efficiency Improve data quality	
Project planning and community communication on the extension of CCD code and PDB accession code	Better data management	
Improve EM deposition	Better data validation	•

Background Information

Questions and Comments?

PDB Archive Status

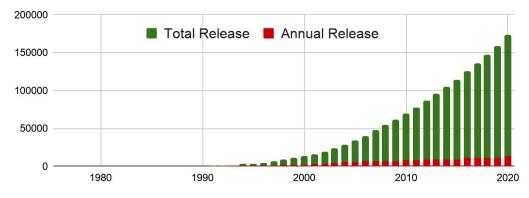
John Westbrook

Archive Growth in 2020

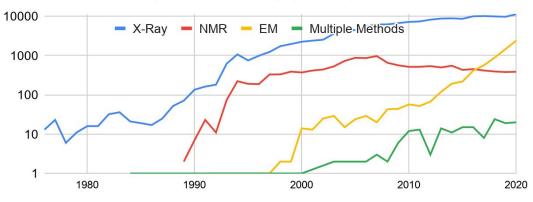
Year-end holdings > 173K structures

- Record 14,044 new structures released (22% increase over 2019)
 - 8.8 % growth in the archive

Core Archive Storage


- OneDep Sessions: 26 TB
- ftp (legacy + versioned): 1.5TB
- EMDB ftp: 4 TB

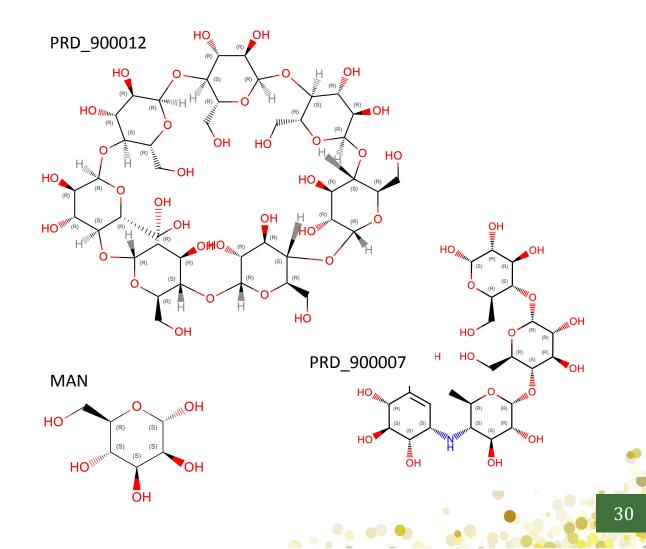
Storage for Deployed Core Archive Services: 132 TB


- Redundant copies of all ftp servers, map and model services, images, and annual snapshots
- Based on total storage footprint, projected growth can be supported through 2022 for current RCSB.org services with current hardware

CoreTrustSeal certification renewed through April 2024 (<u>CoreTrustSeal.org</u>)

Total and Annual Release

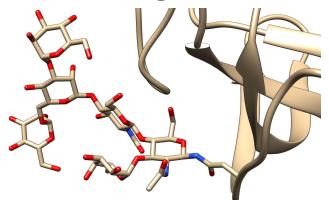
Chemical Reference Data



~34K Chemical Component Definitions

- 3118 new in 2020 (Up 29% over 2019)
- 6598 updated (Up 1.6x over 2019)
- ~1K Biologically Interesting molecule Reference Dictionary (BIRD) Definitions
 - 174 new in 2020 (Up 9x over 2019)
 - 130 updated (Up 60x over 2019)

Overlap with External Resources


- PubChem 31603 (92% of CCD)
- ChEMBL 12902 (38%)
- ChEBI 4616 (14%)
- DrugBank 6022 (18%)
- Pharos 4277 (13%)

July 2020: Carbohydrates Released

Scope

- 862 monosaccharides in the Chemical Component Dictionary
- 134 BIRD molecules
- ~10% of PDB structures that contain carbohydrates remediated
 - ∼14,000 PDB structures
 - ~13,500 oligosaccharides

Process

Communicated with glycoscience, PDB, and software developer communities *via* conferences/virtual meetings

DATA BANK

Standardized nomenclature following IUPAC/IUBMB

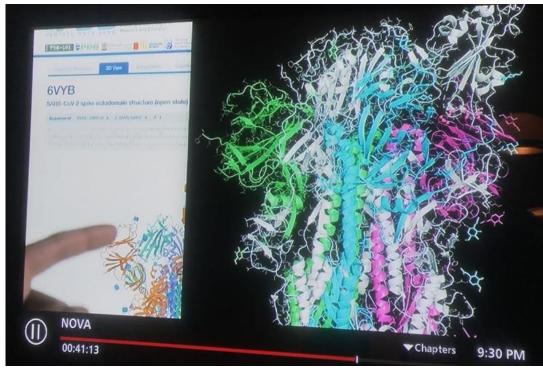
Adopted glycoscience community software

Provided uniform representation for oligosaccharides with community linear descriptor(s)

Annotated glycosylation with enumerated types

Additional Archive Projects In 2020

- NIH Common Fund Supplement (1 year)
 - Extends PDB data integration to NIH Common Fund data resources
 - Pharos: Illuminating the Druggable Genome (IDG; 49.8K PDB entries)
 - Genotype-Tissue Expression (GTEx) (48.7K PDB entries)
 - International Mouse Phenotyping Consortium (IMPC) (2.3K PDB entries)
- DOE KnowledgeBase (KBase) PDB Integration Project (2 years)
 - Reciprocal data exchange APIs with the KBase platform
- Joint NSF/BBSRC Project with PDBe (3 years)
 - Developing APIs for automated data deposition
 - Next generation archive with enriched/updated derived and integrated data products



Questions and Comments?

New and Improved RCSB.org

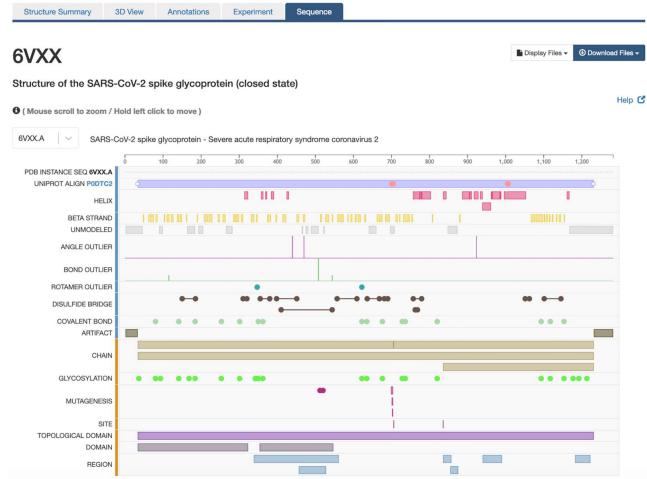
Jose Duarte and Yana Rose

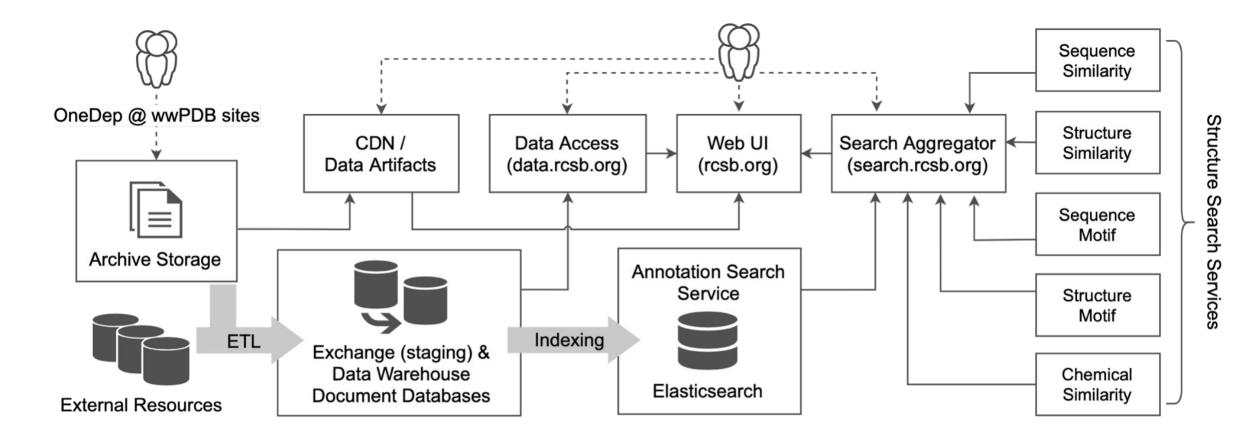
RCSB.org visualization on NOVA

New RCSB.org Released April 2020

- Combined structure, sequence, chemistry, and annotation searches
- Search results now shown at Entry, Assembly, and Entity levels
- Left-hand menu for quick refinement of search results
- Improved tabular report
- Bookmarkable searches
- Improved MyPDB access to stored searches
- New APIs support data access and searching

Adv	anced Sea	arch Query E	Builder 🕢										
	 Attribut 	te 😡											
		Source Org	ganism Taxonomy	Name -	= equals	÷	Coronaviridae		Add 🕇	NOT	803	×	
	AND	Select fi	eld		z X								
	AND / C	FAdd Field	Add Subgroup	Remove G	oup								
		Add Group											
	 Sequer 	nce 😡											
D	SLSGFRKMAFPSGKVEGCMVQVTCGTTTLNGLWLDDTVYCPRHVICTAEDMLNPNYEDLLIRKSNHSFLVQAGNVQLRVIGHSMQNCLLRLK												
1	PDB ID 1	Q2W Targe	et Protein 🛊 🛛	E-Value Cut	off 100000	0					29	7 Clea	ar
	dentity C	utoff 50	% (Integer only)	0									
	Sequence Motif												
	Structure	Similarity											
ND PDB ID 6LU7 Assembly ID \$ 1 \$ Strict Relaxed										304	2 Clea	ar	
▲ Chemical Ø													
D	CC(C)C[C@H](NC(=0)OCC1CCC(F)(F)CC1)C(=0)N[C@@H](C[C@@H]2CCNC2=0)(C@@H](0)[S](0)(=0)=0												
	Query Tur	Dana	intor A Descrin	tor Time O	SMILES A							2 Clas	11
	Query Type IDescriptor Ippe IDescriptor Type IDES 3 Clear Match Type IDES Graph Relaxed Stereo IP 3												
						Displa	y Results as 😡	Structures		¢ C	ount	Clear	Q
fine	ments 👩	Clear All	Q Summa	ry Gallery	Compact	Tabular	Report	\$	Do	ownloa	d Sele	cted Fil	es
		NE OF	1 Score			\$						Select A	All 2
CIENTIFIC NAME OF OURCE ORGANISM			Displaying 1 to 3 of 3 Structures Page 1 of 1 Display						25 \$ per page				
syndrome-related				6W24	4			D	ownlos	ad Filo	View F	File	
Sev	drome co	1) respiratory ronavirus 2 (respiratory	n)		Kaship	athy, M.M.,	structure of SAR Lovell, S., Battail	e, K.P., Rathnay	ease in	comp	lex wi	th inhibi	itor
synd	drome-rel	ated	(A)	Ca		Sci Transl N		5, 19.0.					
			S.	a	Releas		2020-08-12						
AXONOMY Clear Riboviria (3) XPERIMENTAL Clear				3D View	Metho		X-RAY DIFFRAC		ma rola	ted co	in an an a	110	
					Organi Macro	sms molecule	Severe acute res Replicase polyp			100 00	Unavi	us	
			lear				QYS, VDJ						


New Features May-Dec 2020


- New images (Mol*-generated) for entries, polymer entities, and assemblies
- New Protein Feature View
- Sequence Alignments in Search Results
- Access and visualization of updated carbohydrate data
- Genome View: graphical summary of PDB entity sequences and reference genomes
- Documentation for all new features

Streamlined Delivery

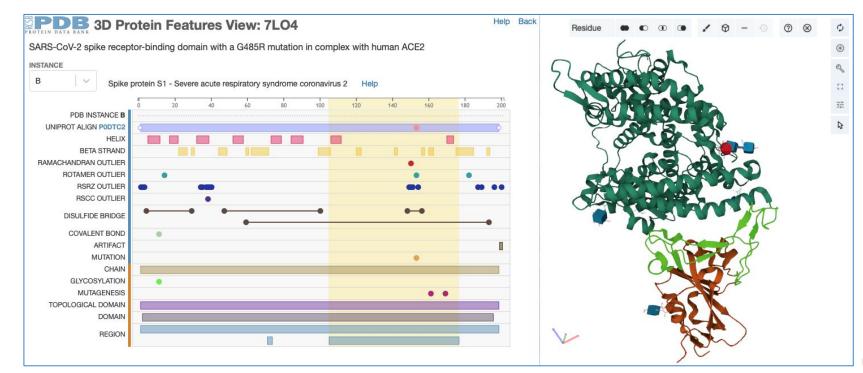
• Legacy APIs retired

Background Information; *RCSB Protein Data Bank: Architectural Advances Towards Integrated Searching and Efficient Access to Macromolecular Structure Data from the PDB Archive*, <u>https://doi.org/10.1016/j.jmb.2020.11.003</u>

Monitoring Customer Service

- Customer Service enquiries increased after initial release of new features
 - 2020 Q2: 643 total questions/comments
 - 2019 Q2: 288 total
- Users
 - Provided positive feedback
 - Wanted more guidance on usage
 - Identified bugs and requested new features
- Feedback returned to baseline Fall 2020
- Detailed documentation project initiated

Documentation	-														
General Help	Overv	view													
- Search	↓ QUERY: (Source Organi	sm Taxono	my Name = "Hor	mo sapiens" A	ND Release Date	e > 01	/01/2010) AND	Chemical Sea	ch = OC[CH](Cc1ccccc1)N	0 0	Open In (uery Bui	der My	PDB Login
Overview	(=O)CCC2	eNc3cccc3C	(=0)N2 WH	HERE Query Type	e = Descriptor	AND Descriptor	Туре	= SMILES AND N	latch Type = 0	Graph Relaxed					
Basic Search	 Advanced Se 	,	Builder (0											
 Advanced Search 	Attribute	0	Source Or	rganism Taxonomy	VName		z e		Homo sapiens		Add		48275		
Overview >		AND	Release D		y Hane		• •		01/01/2010		ridd			104537	×
Attribute Search		AND / OR	Add Field	Add Subgroup	Remove Gro	up									
		Add Group													
Attribute Details	▼ Sequence	0													
Sequence Search	▼ Sequence	Motif 😡													
	- Structure	Similarity O													
Sequence Motif Search															
Sequence Motif Search Structure Search	Chemical	0	CCC2=Nc3	ccccc3C(=O)N2											
	AND OC[CH](Cc	O 1ccccc1)NC(=O)			ES y Match	Sine Q. Granh Be	alavar	4							Clear
Structure Search	AND OC[CH](Cc	O 1ccccc1)NC(=O)		ccccc3C(=O)N2 tor Type	ES 🗸 Match	Type 🛛 Graph Re	elaxed	4 ~		Disniav Basulta as	Struc	turae			2 Clear
Structure Search Structural Motif Search	AND CC[CH](Cc Query Type	Cocccc1)NC(=0) Descriptor	Descript	tor Type 🕢 SMIL						Display Results as 🧿			v	2 0	llear Q
Structure Search Structural Motif Search Chemical Search Search Examples	AND OC[CH](Cc	Cocccc1)NC(=0) Descriptor	Descript			Type 🕢 Graph Re		1 ~ ~ 1 \$co	re	Display Results as @				2 0	
Structure Search Structural Motif Search Chemical Search Search Examples MyPDB	AND CCHICC Query Type Refinements @ SoleNTIFIC NAM SOURCE ORGAN	Descriptor Ciear All E OF ISM	Descript	tor Type 🕢 SMIL	y Compact				re				d Selecte	2 C	llear Q
Structure Search Structural Motif Search Chemical Search Search Examples MyPDB 3D Viewers	AND CCCHICC Query Type Refinements ©	Descriptor Ciear All E OF ISM	Descript	tor Type 🖗 SMIL Summary Gallery	y Compact	Tabular Report			re				d Selecte Dis	2 C	Select All
Structure Search Structural Motif Search Chemical Search Search Examples	AND CCHICC Query Type Refinements @ SoleNTIFIC NAM SOURCE ORGAN	Descriptor Ciear All E OF ISM	Descript	tor Type 🖗 SMIL Summary Gallery	y Compact	Tabular Report Page 1 of 1 4L7L	t	✓ ↓Sco				Downloa	d Selecte Dis Downlo	2 C d Files \$ play 25 ad File V	Select All


New RCSB.org documentation (released early 2021)

Visualizing Protein Features in 3D

3D Protein Feature View maps protein sequence features (annotations from RCSB PDB and external resources) on 3D proteins structures

- Navigate between 1D sequence features and 3D structure
- Select regions of interest
- Highlight interactions of specific residues
- Explore an environment of an ion/ligand

Questions and Comments?

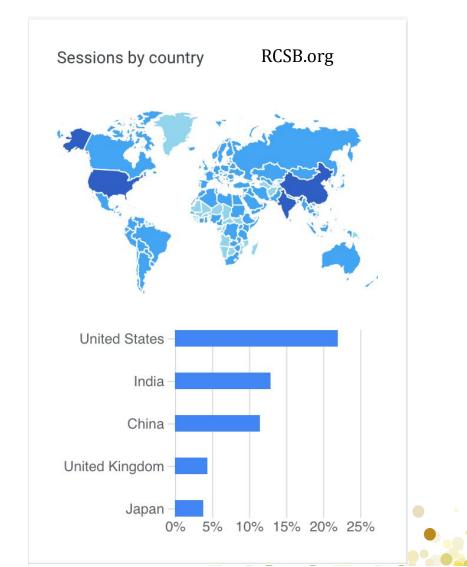
PDB Data Delivery

Rob Lowe

RCSB PDB Usage in 2020

RCSB.org

- \sim 5.4 million unique users (\sim 4 m in 2019)
 - 11 million sessions
 - 44 million page views
 - ~79 TB of data accessed

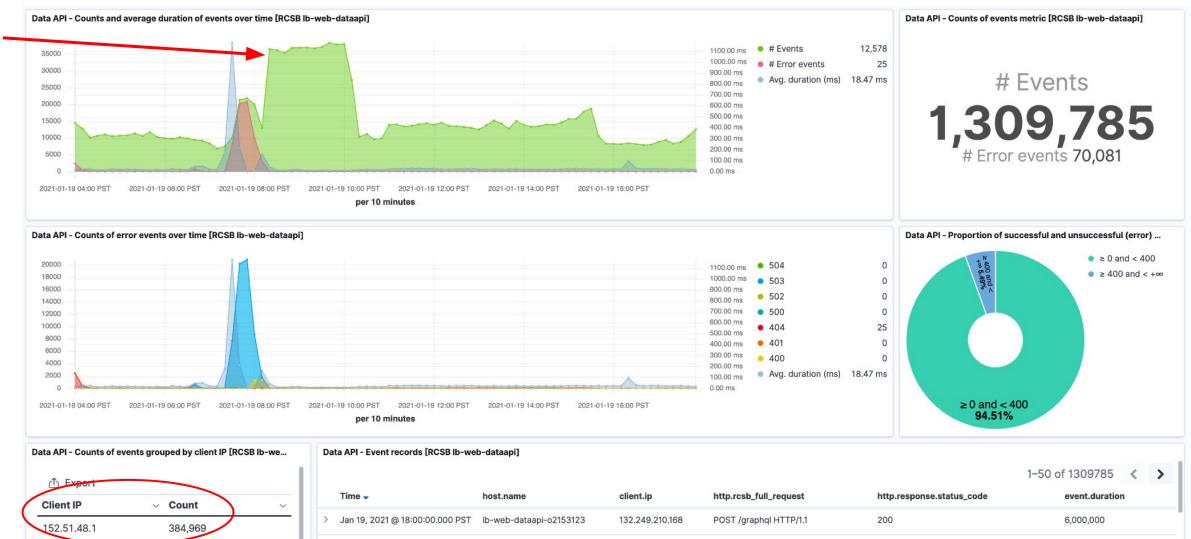

Data File Downloads

- >575 million times from RCSB PDB-hosted FTP and websites (~547 million in 2019)
- Additional downloads from PDBe and PDBj

External Utilization

- >430 external resources repackage and distribute data
- Biopharm/biotech companies use PDB data internally

Tracked using Google Analytics, AWstats, internal logging services



Website Traffic Monitoring

43

Jan 19, 2021: Data API queries spike produced by a single scripting user from GSK in Pennsylvania

Questions and Comments?

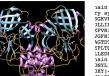
Outreach/Education

Christine Zardecki

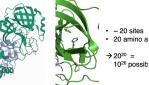
2020 Focus: COVID-19

The New York Times

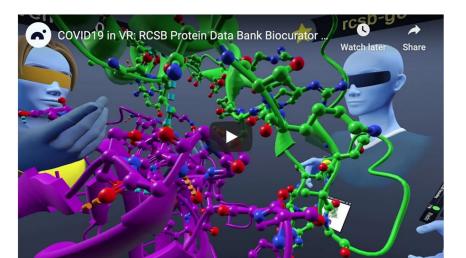
CALIFORNIA TODAY


Why Are California and New York Different in the Virus Crisis?

Monday: It's too early to say for sure, but some experts say early action by California leaders has helped. Also: Art during the pandemic.

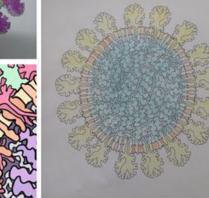

Boot Camp: COVID-19 Evolution and Structural Biology

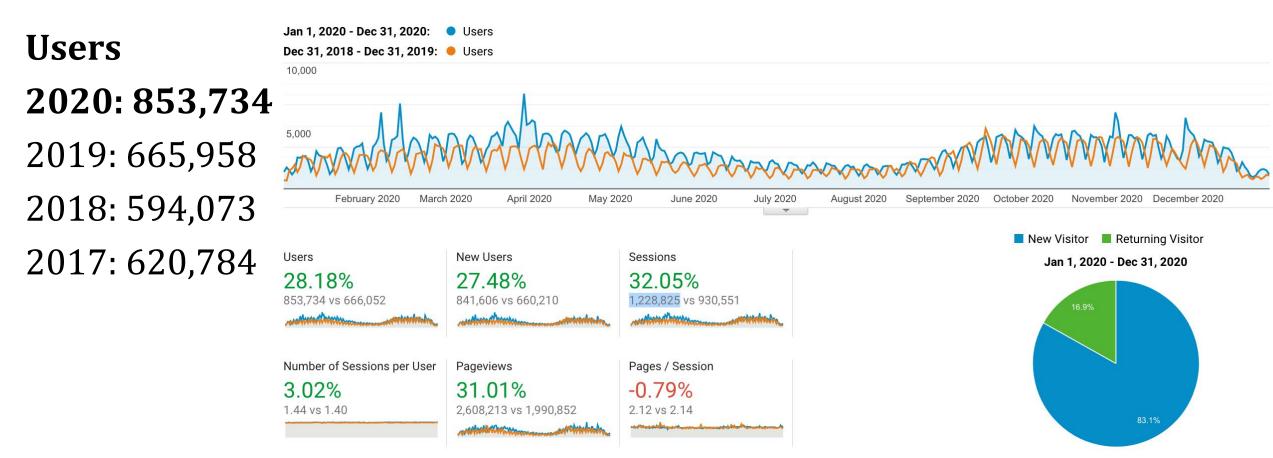
Modules


Biology, and SARS-CoV-2

ain A|main protease|Severe y syndrome coronavirus 2 (2 GKVEGCMVQVTCGTTTLNGLWLDDVV) DLLIRKSNHNFLVQAGNVQLRVIGHSM FVRIOPGOTFSVLACYNGSPSGVYOC GFNIDYDCVSFCYMHHMELPTGVHAG GTDTTITVNVLAWLYAAVINGDRWFLM $\label{eq:construction} \begin{array}{l} & \operatorname{AGTDTTITVNULARLYAAVINODRWFLM} \\ & \operatorname{SPLTOPHVULGPLSAQTGAVLDMCAE} \\ & \operatorname{LEDEFTPFDVVRQCSGVTFQ} \\ & \operatorname{nain} \operatorname{C} | \operatorname{N} = (5 - \operatorname{METHVLISOXAZOL} -) \\ & \operatorname{NVL} | \operatorname{ALANYL} - L - VALYLM - N - 1 - ((1) \\ & \operatorname{NVL}) - 4 - \operatorname{OXO} - 1 < [(3 R) - 2 - \operatorname{OXOFYF} \\ & \operatorname{VL} | \operatorname{BUT} - 2 - \operatorname{ENYL}) - \\ & \operatorname{VL} | \operatorname{Synthetic} \ construct \ (3 2) \\ \end{array}$

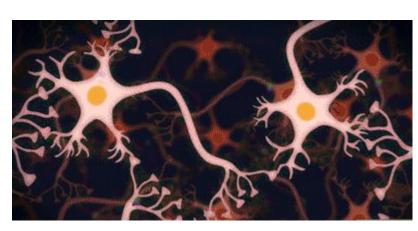
2. Sequence Alignments and 1. Protein Data Bank, Structura Phylogenetic Trees


3. 3D Structure Visualization with Mol* 4. Protein Modeling and Foldit



PDB-101 Supported More Users

PDB-101 in 2020: Beyond Covid


- <u>2021 calendar</u> (with wwPDB partners)
- 9 Molecule of the Month articles
- Molecular Origami paper models:
 <u>Green and Red Fluorescent Proteins</u>
- Understanding <u>Integrative Modeling</u>
- Video: Neuronal Signaling and Sodium-Potassium Pump
- Virtual Meeting <u>Backgrounds</u>
- Health Focus: <u>Drugs & Brain</u>
 - HS Video Challenge
 - Undergraduate MAP course

2022-23 Health Focus: *Cancer*

PDF template for dsRED in color.

PDF template for GFP in color.

Full video at PDB-101. >16K views on YouTube.

Inaugural PDB50 Event (Virtual)

PDB50

A special symposium celebrating the 50th anniversary of the Protein Data Bank

May 4-5, 2021

May 4 | 11 a.m. - 4:30 p.m. ET

Helen M. Berman, Rutgers, The State University of New Jersey & Univ. of Southern California The evolution of the Protein Data Bank as a community resource

Zihe Rao, ShanghaiTech University and Tsinghua University Structural insight into SARS-CoV-2 replication and transcription complex (RTC)

Stephen K. Burley, Rutgers, The State University of New Jersey & UC San Diego Impact of structural biologists and fifty years of Protein Data Bank operations on drug discovery and development

Alexandre M. J. J. Bonvin, Utrecht University Solving 3D puzzles by integrative modelling using PDB

Eddy Arnold, Rutgers, The State University of New Jersey

Using HIV-1 reverse transcriptase structures to guide anti-AIDS drug discovery

Hao Wu, Harvard Medical School, Boston Children's Hospital

"Speck"tacular inflammasomes: structures of supramolecular complexes in innate immunity

Jennifer L. Martin, University of Wollongong Science, crystallography, reflections: A journey with the PDB over 35 years

asbmb.org/meetings-events/pdb50

May 5 | 11 a.m. – 4:30 p.m. ET

Johann Deisenhofer, University of Texas Southwestern Medical Center 50 years of PDB — from crazy idea to treasure

Juli Feigon, University of California, Los Angeles Structural biology of telomerase

Thomas L. Blundell, University of Cambridge A personal history of five decades of structural biology and the PDB: From the X-ray structure of 2-Zinc insulin hexamer in 1970 to Cryo-EM structures of DNA-PK from DNA repair in 2020

Stephen L. Mayo, California Institute of Technology Antibody small molecule conjugates with computationally designed target binding synergy

Wah Chiu, Stanford University Cryo-EM of biomolecules at Ångström resolutions

Angela Gronenborn, University of Pittsburgh Integrated BioNMR – getting by with a little help from my friends

Organized by the wwPDB Foundation

> ASBMB Hosted by the <u>American Society</u> for <u>Biochemistry and</u> Molecular Biology

Registration so far

- >800 registered
- 275 posters
 - ~ 175 students and postdocs
 - 16 wwPDB
- Let Christine know if you want to register as our guest

wwPDB Foundation Industrial Sponsors (to date)

- Platinum: ThermoFisher, Novartis
- Silver: Astex Pharmaceuticals, Bristol Myers Squibb, Cambridge Isotope, Dectris, Genentech, Discngine, National Biomedical Research Foundation, OpenEye, Silicon Therapeutics
- Bronze: Anton Paar, Cell Press, Rigaku

Other PDB50 Celebrations

- ACA <u>Transactions Symposium 2021:</u> <u>Function Follows Form: Celebrating</u> <u>the 50th Anniversary of the Protein</u> <u>Data Bank</u> (Jul 30-31, virtual)
- ACS Understanding Enzyme Function in 3D (Aug ~25, Virtual)
- <u>Bringing Molecular Structure to Life:</u> <u>50 Years of the PDB</u> (Oct 20-22, virtual EMBL Conference)
- Celebrating Protein Data Bank
 Contributions from Rutgers University
 Structural Biologists (Nov 2, virtual)
- Biophysical Society of Japan (Nov 24, TBD)

The PDB in JBC

scientific areas.

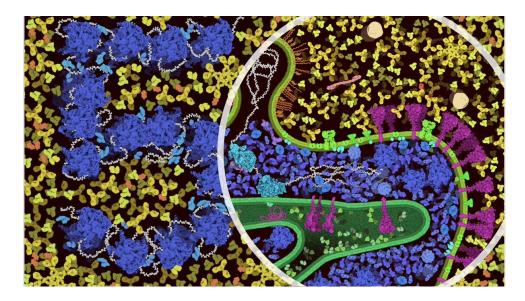
Highlights a few of the seminal structures published in JBC since 1971, including classics across a variety of fields

Assembled by Lila Gierasch and Helen Berman

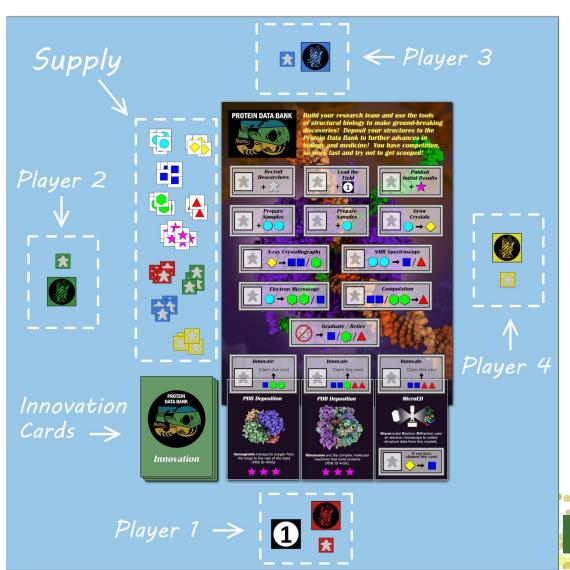
<u>Collection of JBC Reviews shows</u> synergism between the PDB and

explosive progress witnessed in many

Coordinating Editors: Lila Gierasch


and Helen Berman (guest)

Select Works in Progress



51

- October Molecule of the Month
- <u>CellPAINT image contest</u>

Printable game

Questions and Comments?

Operations and Funding

Stephen K. Burley

Team Transitions

Rutgers

- New Hires: Maryam Fayazi (Developer), Justin • Flatt (Biocurator), Harmeet Kaur (Developer), Dennis Piehl (Developer), Shamara Whetstone (Admin)
- Departure: Cindy Kleiman (Admin, to ٠ retirement)

UCSD

Background Information

- New Hire: Jeremy Henry (DevOps) •
- Promoted: Sebastian Bittrich (Developer) •
- Departure: Alex Rose (Developer, to Industry) ٠

Administrative Coordinator/Executive Assistant to Dr. Burley

Shamara Whetstone Dr. Dennis Piehl

Scientific Application/Web Developer

Dr. Justin Flatt Biocurator

Jeremy Henry **DevOps Lead**

Dr. Harmeet Kaur Scientific Application/Web Developer

54

Dr. Sebastian Bittrich

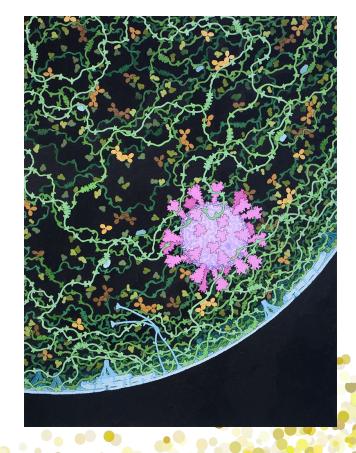
Scientific Software Developer

Recruitment in 2020

- Biophysical Society Job Fair
- Professional societies: American Crystallographic Association (ACA), American Society for Biochemistry and Molecular Biology (ASBMB), BioXFEL, International Society for Computational Biology (ISCB), Nature, Society for Advancement of Chicanos/Hispanics and Native Americans in Science (SACNAS)
- Informal postings: Black Women in Computational Biology Network, 500 Queer Scientists, Facebook, Twitter, LinkedIn, CCP4, pdbl

CAREER OPPORTUNITIES for SCIENTIFIC SOFTWARE DEVELOPERS

Join the multidisciplinary RCSB Protein Data Bank Team at Rutgers, The State University of New Jersey and the University of California San Diego


Develop innovative analysis, integration, query, and visualization tools for 3D biomolecular structures at **RCSB.org** to help accelerate research and training in biology, medicine, and related disciplines.

Design, develop, and deploy modern web and data applications and complex interactive graphical user interfaces.

Open Positions: Scientific Software Developer (Rutgers) Scientific Software Developer (UCSD) Postdoctoral Researcher (UCSD)

Details: www.rcsb.org/pages/jobs

New wwPDB Charter

- Effective Date January 1 2021
- Admitted <u>Electron</u> <u>Microscopy Data Bank</u> (EM Map Archive)
- Framework for admission of PDB China and PDB India as Associate wwPDB Members (with roadmap for transition to Full Membership)
- Adopted Creative Commons CC0 License

CHARTER OF THE WORLDWIDE PROTEIN DATA BANK

Agreement between

RESEARCH COLLABORATORY FOR STRUCTURAL BIOINFORMATICS PROTEIN DATA BANK (RCSB PDB Organization), Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States

and

The EUROPEAN MOLECULAR BIOLOGY LABORATORY ("EMBL"), an intergovernmental institution established by treaty, headquartered at Meyerhofstrasse 1, 69117 Heidelberg, Germany acting through its UK Outstation the European Bioinformatics Institute ("EMBL-EBI"), located on the Wellcome Genome Campus in Hinxton, Cambridgeshire, UK, operating both the PROTEIN DATA BANK IN EUROPE (PDBe Organization) and the ELECTRON MICROSCOPY DATA BANK (EMDB Organization)

and

PROTEIN DATA BANK JAPAN (PDBj Organization), Osaka University, Osaka, Japan

and

BIOLOGICAL MAGNETIC RESONANCE DATA BANK (BMRB Organization), University of Connecticut, Farmington, Connecticut, United States

Effective from January 1, 2021

CHARTER OF THE WORLDWIDE PROTEIN DATA BANK (wwPDB)

1. Rationale

The Worldwide Protein Data Bank (wwPDB) was created to provide an enduring organizational framework for global management and dissemination of public-domain structural biology data.

It is essential for the progress of international science that structural biology data be maintained within a limited number of unfragmented archives, identified herein as *wwPDB Core Archives*.

At present, the wwPDB manages three wwPDB Core Archives, including the Protein Data Bank (PDB), the Biological Magnetic Resonance Data Bank (BMRB), and the Electron Microscopy Data Bank (EMDB).

It is paramount that facilities for deposition, validation, biocuration, remediation, and storage of publicdomain structural biology data in the *wwPDB Core Archives* be managed jointly by the **wwPDB Core Members** with all services provided at no charge to **wwPDB Data Depositors**.

It is equally important that structural biology data stored in the *wwPDB Core Archives* be freely and publicly disseminated by the **wwPDB Core Members** and the **wwPDB Associate Members** without charge or limitations on usage.

wwPDB Core Members and wwPDB Associate Members are fully committed to the FAIR Principles of Findability-Accessibility-Interoperability-Reusability, emblematic of responsible stewardship of public domain information.

Strategic Initiatives

Stephen K. Burley Andrej Sali

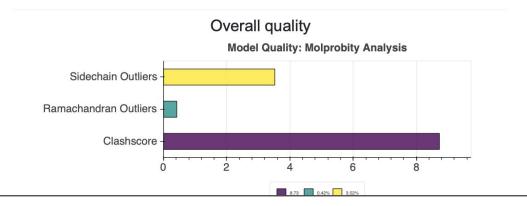
PDB-Dev: Validation of Models

- I/HM validation report will be available for all ~80 entries in <u>PDB-Dev</u> by August 2021
- First version of the report will include model quality assessment and SAS validation (HTML and PDF)
- Summary table will be available for download
- Well-tested and code-reviewed IHM-validation package available on <u>GitHub</u>
- Next: Validation based on CX-MS data

PDB-Dev Prototype Archiving System for Integrative	Structures	Released Entries: 36
Validation Report for PDBDEV_00000009		
Overview ▼ Model details ▼ Data quality ▼ M	Model quality 🝷	Fit to data used 👻
PDBDEV_0000009	PDB ID	PDBDEV_0000009
Download report Download table	Molecule Name	Structure of the human Rev7 dimer
	Title	Rev7 dimerization is important for assembly and function of the Rev1/Polî¶ translesion synthesis complex
	Authors	Alessandro A. Rizzo; Faye-Marie Vassel; Nimrat Chatterjee; Sanjay D'Souza; Yunfeng Li; Bing Hao; Michael T. Hemann; Graham C. Walker; Dmitry M. Korzhnev

I/HM Validation project funded by RCSB PDB.

Development of the I/HM dictionary and the PDB-Dev prototype system funded by NSF awards DBI-1519158, DBI-1756248, and DBI-1756250.


Full RCSB Integrative Structure Validation Report

April 15, 2021 -- 02:16 PM

The following software were used in the production of this report:

Molprobity : Version 4.4 Integrative Modeling Validation Package : Version 1.0

PDB ID	PDBDEV_00000009
Molecule Name	Structure of the human Rev7 dimer
Title	Rev7 dimerization is important for assembly and function of the Rev1/Pollُ¶ translesion synthesis complex
Authors	Alessandro A. Rizzo; Faye-Marie Vassel; Nimrat Chatterjee; Sanjay D'Souza; Yunfeng Li; Bing Hao; Michael T. Hemann; Graham C. Walker; Dmitry M. Korzhnev

1	of	2
	•	-

Summary of integrative structure determination of structure of the human rev7 dimer (PDBDEV00000009)

1. Model Composition	
Entry composition	 - Rev3-RBM2: Chain B (28 residues) - Rev7-monomer: Chain C (212 residues) - Rev7-monomer: Chain A (212 residues) - Rev3-RBM2: Chain D (28 residues)
Datasets used for modeling.	- SAS data, SASDC29 - Experimental model, PDB ID: 6BC8 - Mutagenesis data, Not listed
2. Representation	
Atomic structural coverage	100%
Number of <u>rigid bodies</u> , <u>flexible units</u>	0, 4
Rigid bodies	- A: None - B: None - C: None - D: None
Flexible units	- A: 1-212. - B: 1-28. - C: 1-212. - D: 1-28.
Resolution	- Rigid bodies: 1 residue per bead. - Flexible regions: N/A
3. Restraints	
Physical principles	Information about physical principles was not provided
Experimental data	 - 64 unique DerivedDistanceRestraint: Upper Bound Distance: 2.0 - 1 unique SASRestraint: Assembly name: Complete assembly Fitting method: FoXS Multi-state: False
4. Validation	
Sampling validation	- Information related to sampling validation has not bee provided
Clustering algorithm , clustering feature	Distance threshold-based clustering used if ensembles a deposited, Not applicable
Number of ensembles	0
Number of models in ensembles	Not applicable
Model precision (uncertainty of models)	Model precision can not be calculated with one structur

Next Steps Funded by NSF

Funded by the NSF:

Collaborative Research: Creating mechanisms to make integrative structures of large macromolecular assemblies available from the Protein Data Bank

Principal Investigators

- Carl Kesselman (USC)
- Andrej Sali (UCSF)
- Brinda Vallat (Rutgers)



Questions and Comments?

Many thanks to Andy Byrd!

RCSB PDB AC member 2009-2021 and wwPDB AC member (2004-2021) and chair (2015-2018)

2009: Toronto, Canada

2019: Berkeley, CA

Acknowledgements

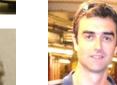
Funding

National Science Foundation (DBI-1832184), National Institute of General Medical Sciences, National Institute of Allergy and Infectious Disease, and National Cancer Institute, (R01GM133198), and the US Department of Energy (DE-SC0019749)

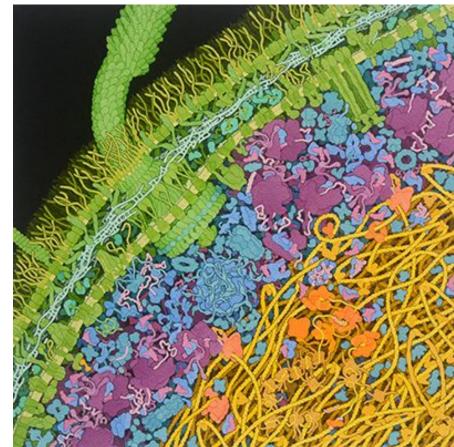
Management

RUTGERS

SDSC SAN DIEGO SUPERCOMPUTER CENTER


Member of the Worldwide Protein Data Bank (wwPDB; wwpdb.org)

Follow us



Group Screenshot Photo

Molecular Landscapes: E. coli

Thank you